The 4+1 Software Safety
Principles and their relation to
building safety cases

Richard Hawkins and Tim Kelly
Department of Computer Science
The University of York

P - THE UNIVERSITY 0f o1k

What are the 4+1 Software Safety
Assurance Principles?

Why 4+17

&K S THE UNIVERSITY of 7k

4+1 Principles

1. Software safety requirements shall be defined to
address the software contribution to system hazards

2. The intent of the software safety requirements shall be
maintained throughout requirements decompaosition

Software safety requirements shall be satisfied

4. Hazardous behaviour of the software has been identified
and mitigated

L

4+1. The confidence established in addressing the software
safety principles shall be commensurate to the contribution
of the software to system risk

&K S THE UNIVERSITY of 7k

Principle 1

® The identification and management of (specific) risks is
fundamental to system safety

® This is no different when considering software

® Many causes of system-level hazards
B Mechanical
B Human
B Environmental
I

B Software

® Need to ensure that we have identified, understood and
captured the potential contribution of software to system
level hazards

&K S THE UNIVERSITY of 7k

Principle 2

® Typical software development lifecycle:
Progression from more abstract requirements to
concrete implementation

® Necessarily requirements must be refined,
decomposed, allocated, interpreted

® There’s more ...

M ... desigh commitment
B ... information
B ... defined behaviour

® ... in the lower level requirements
® With regard to safety this could go well, or not ...

&K S THE UNIVERSITY of 7k

Principle 2

® Following principle 1, we believe the higher level
requirement is OK

® |s the intent of the higher level requirement
maintained in the lower level requirements?

® Notion of “Intent” important
B What we want from / meant by the requirement
B Covers implied semantics
B (Unfortunately) a lot can remain unstated / deliberately undefined,
even quantification
® Don't just think of requirements =»requirements
B Requirements =>Verification Properties
B Requirement =»Test cases

&K S THE UNIVERSITY of 7k

Principle 3

® The (most) obvious one?

® Does the system actually do what we said it
ought to do (as stated in the safety
requirements)?

® Variety of means of achievement possible

® Consequence of earlier principles
B \Want specific evidence for specific safety requirements

® This Is the Verification issue

&K S THE UNIVERSITY of 7k

Principle 4

® Sister principle to Principle 2

® Principle 2 concerned about maintaining the
Intent of our safety requirements, in the presence
of increasing design commitment

® Principle 4 also concerned with the consequence
of increasing design commitment

® Rather than "Does it do what we required™?
(Princ. 2)

® Now “Does it do anything else that is unsafe™?
M |.e. Hazardous side-effects

&K S THE UNIVERSITY of 7k

Principle 4

® Hazardous software behaviours could result from:
B unanticipated behaviours and interactions arising from
software design decisions

® Concerned with where design is unsafe (under some
conditions)

@ Reconsideration of the behaviour of the design
M systematic errors introduced during the software
development process

€ E.g. Coding errors, compilation errors, code-generation
errors, modelling errors

@ (Specific) causality doesn’t have to be proven to know
that there are some errors to be avoided

&K S THE UNIVERSITY of 7k

Principle 4+1

® Perfect assurance of the achievement of the other
principles is desirable, but unachievable

B e.g. consider Principle 1, we cannot prove that the safety
requirements are complete

B Not even if “money no object”
® Instead, we must consider when is enough enough?
® Really a system principle
® Some challenges applying to software

&K S THE UNIVERSITY of 7k

Summary of the Principles

1. Software safety requirements shall be defined to
address the software contribution to system hazards

2. The intent of the software safety requirements shall be
maintained throughout requirements decompaosition

Software safety requirements shall be satisfied

4. Hazardous behaviour of the software has been identified
and mitigated

L

4+1. The confidence established in addressing the software
safety principles shall be commensurate to the contribution
of the software to system risk

&K S THE UNIVERSITY of 7k

Principle 1

Must be able to argue

Goal: swContributionAcc B0 that any contributions
sotre Mo oens |~ ___ the software could make
managed o to system hazards are
AN managed (through
SSRs)

K S e THE UNIVERSITY of fork

Principle 1

Goal: swContributionAce B

Ass: hazards

The contribution made by
{software ¥} to {system Z}
hazards is acceptably
managed

All system hazards
have been comectly
identified

Z

We need to know what all the
hazards are at the system level —
this is not a software issue (part of
system safety process)

K S e THE UNIVERSITY of fork

Ass: hazards

All system hazards
have been cormactly
identified

Arguing separately over

each system hazard helps

ensure software
contributions are not
overlooked

Principle 1

Goal: swContributionAce B

The contribution made by
{software ¥} to {syslem £}
hazrards is acceptably

managed

Strat:

swContributionAcc
Argument over each
hazard to which {software
¥} may contribute

\)’i

Goal: Hazard —|

Software contribution(s) to
{Hazard} is acceptably
managed

£

Con: hazards

{Description of hazards
to which {software ¥}
may contribute}

AN

® number of hazards to which
the software may contribute

High Integrity
Systems Engineering

THE UNIVERSITYW

Principle 1

Goal: Hazard —

Software contribution(s) to \Thls mlght be the point at

{Hazard} is acceptably

managed which you link into the
system safety argument

*Then argue for each
system hazard that each

software contribution to that Pom——— Con: contributions
haz ard iS mana ed A t h {Description of the ways
J et o e non s)
contribution to {Hazard} {Hazard})

AN <

number of identified software
9, contributions to {Hazard}

Y

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
managed

AC Aoty THE UNIVERSITY 0f fork

Principle 1

Knowing you've identified all Goal: Hazard =

the software contributions is Software contribution(s) to
Hazard! is acceptabl

key here — must be able to managel et

argue that you have

Goal: contldent_contident
Strat: contMit Con: contributions
The ways in which {software ¥} may Argument over each {Description of the ways
contribute to {Hazard} are completely identifled software in which Egﬁ;wi:re ¥}
and correctly identified confribution to {Hazard} ;‘l_&}; zcr::lj'; } ute to
& contldent ﬁl ~
° number of identified software
. . n ntributions to {Hazard
Even though still treating sw contrib (Hazard)
as ‘black-box’ it can be hard Y
tO tease OUt Goal: sw contribution
{software contribution} to
{Hazard} is acceptably
managed
oy

AC Aoty THE UNIVERSITY 0f fork

Principle 1

Goal; sw contribution

{software contribution} to
{Hazard} is acceptably

We address each managed

“\
contribution through defined
Software Safety
ReqUIrementS (SSRS) Strat: swcuntrlhutmn Con: 88Rs
Argument over S5Rs 155Rs identified o
defined to address address
software contribution contribution}

AN

AC Aoty THE UNIVERSITY 0f fork

Principle 1

Goal: sw contribution

{software contribution} o
{Hazard} is acceptably

managed
™
Goal: SSRidentify _SSRidentify ¢
Strat: sw contribution Con: S5Rs
S5Rs are appropriate to address the Argument over S5Rs {35Rs identified to
identified software contribution o system defined to address addrass
hazards software contribution contribution}
F— sSRideniy <> P

\

Need to be able to argue that the
SSRs you’ve defined are
appropriate to manage the

contribution to the hazard
Note that these requirements are

at the software — system
boundary

AC Aoty THE UNIVERSITY 0f fork

Principle 2

We need to be able to show that the SSRs are correct not just at the top level,
but at each level of software design decomposition

Goal: sw contribution

A ‘tier’ is one level

Con: tierNdesign {software contribution} to

Of dESIgﬂ {Hazard} is acceptably
T {Hlier n} design} managed at {tier n}
decomposition ~ >
Goal: SSRidentify _SSRidentify l
Strat: sw

contribution
Argument over SSRs
identified for {lier n}

N

S5Rs from {tier n-1} have been
adequately allocated, decomposed,
apportioned and interpreted at {tier n}

& S5R Identification Pattem

Con: 55RsN

{S5Rs identified
for {tier n}}

‘Adequately’ means that
the intent of the high-level
SSRs has been maintained

AC Aoty THE UNIVERSITY 0f fork

Principle 2

This is more than just a traceability argument — must demonstrate that the
behaviour is equivalent — more akin to what some people call “rich
traceability”

Con: tierNdesign

{Hlier n} design}
P

Goal: SSRidentify _SSRidentify

S5Rs from {tier n-1} have been
adequately allocated, decomposed,
apportioned and interpreted at {tier n}

& S5R Identification Pattem

Con: 55RsN

{S5Rs identified
for {tier n}}

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
rmanaged at {tier n}

prd

l

Strat: sw
contribution

Argument over SSRs
identified for {lier n}

N

Argument must also consider the
design decisions themselves — do
these affect the sw ability to meet
SSRs?

K/

High Integrity
Systems Engineering

THE UNIVERSITYW

Principle 2

Goal: sw contribution

Con: tierNdesign {software contribution} to

{Hazard} is acceptably
managed at {tier n}

{{tier n} design}

Goal: SSRidentify _SSRidentify

Strat: sw
contribution
Argument over SSRs
identified for {tier n}

S5Rs from {tier n-1} have been
adequalely allocated, decomposed,
apportioned and interpreted at {tier n}

|:|_—| S5SR ldentification Pattern

number of SSRs at {tier n}

Con: 55RsN

{S5Rs idaentifiad
far {tier n}}

PN

Goal: 35RnAddn

{S5Rn} addressed through
the realisation of the design

at {tier n}
AN

We need to argue for each SSR at
each software design tier

AC Aoty THE UNIVERSITY 0f fork

Con: tierNdesign

{{tier n} design}

Goal: SSRidentify _SSRidentify

S5Rs from {tier n-1} have been
adequately allocated, decomposed,
apportioned and interpreted at {tier n}

&I SSR Identification Pattern

Con: 55RsN

{S5Rs idaentifiad
for {tier n}}

P

Principle 2

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
managed at {tier n}

~

Strat: sw
contribution

Argument over S5Rs
identified for {tier n}

number of SSRs at {tier n}

Goal: S5RnAddn

{S5Rn} addressed through
the realisation of the design
at {tier n}

We must show that the SSR
Is addressed at the next level
of decomposition as well (tier
n+1

Goal: S5RnAddn+1

{55Rn} addressed through
the realisation of the design
at {tier n+1}

<

High Integrity
Systems Engineering

THE UNIVERSITYW

Goal: SSRidentify _SSRidentify

85Rs from {tier n-1} have been
adequately allocated, decompaosed,
apportioned and interpreted at {lier n}

&| S5R Identification Patlern

Con: SSRsN

{SSRs identified
for {tier n}}

So we end up having to
make the same type of
argument at each tier

Principle 2

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
managed al {tier n}

l

Strat: sw1
contribution
Argument over 33Rs
jdentified far {tier n}

number of SSRs at {tier n}

Goal: S5SRnAddn

Repeat the same

{S5SRn} addressed through
structure of argument at

the realisation of the design
al {tier n}

each level of design

i decomposition in your
design process

Goal: SSRnAddn+1

{85Rn} addressed through
the realisation of the design
at {tier n+1}

RN

Principle 3

We need to demonstrate the SSRs are satisfied

Goal: SSRidentify _SSRidentify

S5Rs from {tier n=1} have been
adequately allocated, decomposed,
apportioned and interpreted at {tier n}

/

Strat: sw
contribution

Argument over S5Rs
identified for {tier n}

&I SSR |dentification Pattern

number of SSRs at {tier n}

Con: S5RsN

{SSRs identified
for {tier n}}

at {tier n}

Goal: S5RnAddn

{S5Rn} addressed through
lhe realisation of the design

May not always
provide evidence at

Potential to undertake verification
at any tier

Goal: SSRnSat

{S5Rn} demonstrably
satisfied through evidence
provided at {tier n}

d

ﬁﬁﬁﬂfz

every level — more
on this later

Goal: SSRnAddn+1

{S5Rn} addressed through
the realisation of the design
at {tier n+1}

AN

High Integrity
Systems Engineering

THE UNIVERSITYW

Principle 4

Goal: sw contribution

Con: tisrNdesign {software contribution} to

{Hazard} is acceptably
managed at {tier n}

{{tier n} design}

Goal: SSRidentify _SSRidentify Goal: hazC —
oal: hazCont_hazCont

/ Strat: sw

S3Rs from {tier n-1} have been contribution _

adequately allocated, decomposed, <1 W Argument over SSRs — F:::tenual hazardl:iuzll‘allures a;d

apportioned and interpreted at {tier n} identified for {tier n} {tier n} are acceptably manag
& Hazardous Contribution Patiern

O

& S5R Identification Pattern

We need to be able to argue that we are
managing hazardous behaviour at each level of

design

How might we argue this?

AC Aoty THE UNIVERSITY 0f fork

Principle 4

Argument should consider two things

Goal: hazCont —

Potential hazardous failures
at {tier n} are acceptably

managed
>y
Goal: hazFail
Goal: Errors
S35Rs at {tier n} address the
Potentially hazardous design potential hazardous behaviours
errors are not introduced at identified at {tier n}
{tier n} design AN
Systematic errors introduced at Unanticipated behaviours and
this step in the design process interactions arising from the

software design decisions at this
tier (mitigated through additional

SSRS)

K S e THE UNIVERSITY of fork

Principle 4

Goal: hazCont

Potential hazardous failures
at {tier n} are acceptably

managed

—

Goal: Errors

{tier n} design

Potentially hazardous design
errors are not inlroduced at

Alk

Goal: procError

{tier n} design process does
not introduce hazardous

arrors

at least 1 of 2

Goal: desError

{tier n} design does not
contain hazardous errors

<

Control the development process but
also check your design!

Goal: hazFail

S55Rs at {tier n} address the
potential hazardous behaviours

identified at {tier n}

AN

Goal: HSFMident

HSFMs corractly
identified at {tier n}

v

Con: HSFMs

{{tier n} HSFMs}

Geal: S5Rderived

S35Rs sufficient to address
identified HSFMs are

defined

Mitigation through design or
requirements

High Integrity
Systems Engineering

THE UNIVERSITYW

Bringing 4 Principles Together

Goal: sw contribution

Con: tierNdesign {software contribution} to
{Hazard} is acceptably

managed at {tier n}

{tier n} design}

Goal: SSRidentify _SSRidentify
Goal: hazCont_hazCont
Strat: sw
SSRs from {tier n-1} have been contribution ~)
adequaltely allocated, decomposed, Argument over S5Rs el = P_mentlal hazardous failures al
apportioned and interpreted at {tier n} identified for {tier n} / {lier n} are acceptably managed
[Hazardous Contribution Pattern

&' S5R |dentification Pattern

number of SSRs at {tier n}

Con: SSRsN
Goal: 55RnAddn

{S5Rs identified

for {tier n}} {S8Rn} addressed through

the realisation of the design
at {tier n}

L]l

Atleast 1 of 2

Goal: SSRnSat Goal: S5RnAddn+1

{SSI Rfl} demﬂﬂﬁtrﬂtﬂy ISSRN} addressed through
satisfied through evidence the realisation of the design
provided at {tier n} at {tier n+1}

<&

Principle 4+1

® Must be able to demonstrate in the software safety
argument that:
B confidence with which the principles have been addressed is
commensurate to the contribution to system risk
® This requires the provision of a confidence argument
B Confidence argument documents reasons for having confidence
In the main (software) safety argument
® Confidence is ultimately established through the
provision of evidence to support claims made in safety
argument
B Evidence required for all of the principles (not just satisfaction)

&K S THE UNIVERSITY of 7k

