
The 4+1 Software Safety

Principles and their relation to

building safety cases

Richard Hawkins and Tim Kelly

Department of Computer Science

The University of York

What are the 4+1 Software Safety

Assurance Principles?

Why 4+1?

4+1 Principles

1. Software safety requirements shall be defined to

address the software contribution to system hazards

2. The intent of the software safety requirements shall be

maintained throughout requirements decomposition

3. Software safety requirements shall be satisfied

4. Hazardous behaviour of the software has been identified

and mitigated

4+1. The confidence established in addressing the software

safety principles shall be commensurate to the contribution

of the software to system risk

Principle 1

 The identification and management of (specific) risks is

fundamental to system safety

 This is no different when considering software

 Many causes of system-level hazards

 Mechanical

 Human

 Environmental

 …

 Software

 Need to ensure that we have identified, understood and

captured the potential contribution of software to system

level hazards

Principle 2

Typical software development lifecycle:

Progression from more abstract requirements to

concrete implementation

Necessarily requirements must be refined,

decomposed, allocated, interpreted

There’s more …
 … design commitment

 … information

 … defined behaviour

 … in the lower level requirements

 With regard to safety this could go well, or not …

Principle 2

Following principle 1, we believe the higher level

requirement is OK

 Is the intent of the higher level requirement

maintained in the lower level requirements?

Notion of “Intent” important
 What we want from / meant by the requirement

 Covers implied semantics

 (Unfortunately) a lot can remain unstated / deliberately undefined,

even quantification

 Don’t just think of requirements requirements

 Requirements Verification Properties

 Requirement Test cases

Principle 3

The (most) obvious one?

Does the system actually do what we said it

ought to do (as stated in the safety

requirements)?

Variety of means of achievement possible

Consequence of earlier principles
 Want specific evidence for specific safety requirements

This is the Verification issue

Principle 4

Sister principle to Principle 2

Principle 2 concerned about maintaining the

intent of our safety requirements, in the presence

of increasing design commitment

Principle 4 also concerned with the consequence

of increasing design commitment

Rather than “Does it do what we required”?

(Princ. 2)

Now “Does it do anything else that is unsafe”?
 i.e. Hazardous side-effects

Principle 4

Hazardous software behaviours could result from:

unanticipated behaviours and interactions arising from

software design decisions

Concerned with where design is unsafe (under some

conditions)

Reconsideration of the behaviour of the design

systematic errors introduced during the software

development process

E.g. Coding errors, compilation errors, code-generation

errors, modelling errors

(Specific) causality doesn’t have to be proven to know

that there are some errors to be avoided

Principle 4+1

 Perfect assurance of the achievement of the other

principles is desirable, but unachievable

 e.g. consider Principle 1, we cannot prove that the safety

requirements are complete

 Not even if “money no object”

 Instead, we must consider when is enough enough?

 Really a system principle

 Some challenges applying to software

Summary of the Principles

1. Software safety requirements shall be defined to

address the software contribution to system hazards

2. The intent of the software safety requirements shall be

maintained throughout requirements decomposition

3. Software safety requirements shall be satisfied

4. Hazardous behaviour of the software has been identified

and mitigated

4+1. The confidence established in addressing the software

safety principles shall be commensurate to the contribution

of the software to system risk

Principle 1

Must be able to argue

that any contributions

the software could make

to system hazards are

managed (through

SSRs)

Principle 1

We need to know what all the

hazards are at the system level –

this is not a software issue (part of

system safety process)

Principle 1

Arguing separately over

each system hazard helps

ensure software

contributions are not

overlooked

Principle 1

•Then argue for each

system hazard that each

software contribution to that

hazard is managed

This might be the point at

which you link into the

system safety argument

Principle 1
Knowing you’ve identified all

the software contributions is

key here – must be able to

argue that you have

Even though still treating sw

as ‘black-box’ it can be hard

to tease out

Principle 1

We address each

contribution through defined

Software Safety

Requirements (SSRs)

Principle 1

Need to be able to argue that the

SSRs you’ve defined are

appropriate to manage the

contribution to the hazard

 Note that these requirements are

at the software – system

boundary

Principle 2

We need to be able to show that the SSRs are correct not just at the top level,

but at each level of software design decomposition

A ‘tier’ is one level

of design

decomposition

‘Adequately’ means that

the intent of the high-level

SSRs has been maintained

Principle 2
This is more than just a traceability argument – must demonstrate that the

behaviour is equivalent – more akin to what some people call “rich

traceability”

Argument must also consider the

design decisions themselves – do

these affect the sw ability to meet

SSRs?

Principle 2

We need to argue for each SSR at

each software design tier

Principle 2

We must show that the SSR

is addressed at the next level

of decomposition as well (tier

n+1)

Principle 2

So we end up having to

make the same type of

argument at each tier

Repeat the same

structure of argument at

each level of design

decomposition in your

design process

Principle 3
We need to demonstrate the SSRs are satisfied

May not always

provide evidence at

every level – more

on this later

Potential to undertake verification

at any tier

Principle 4

We need to be able to argue that we are

managing hazardous behaviour at each level of

design

How might we argue this?

Principle 4
Argument should consider two things

Unanticipated behaviours and

interactions arising from the

software design decisions at this

tier (mitigated through additional

SSRs)

Systematic errors introduced at

this step in the design process

Principle 4

Mitigation through design or

requirements

Control the development process but

also check your design!

Bringing 4 Principles Together

Principle 4+1

 Must be able to demonstrate in the software safety

argument that:

 confidence with which the principles have been addressed is

commensurate to the contribution to system risk

 This requires the provision of a confidence argument

 Confidence argument documents reasons for having confidence

in the main (software) safety argument

 Confidence is ultimately established through the

provision of evidence to support claims made in safety

argument

 Evidence required for all of the principles (not just satisfaction)

